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THE FARRELL-HSIANG METHOD REVISITED

BARTELS, A. AND LÜCK, W.

Abstract. We present a sufficient condition for groups to satisfy the Farrell-
Jones Conjecture in algebraic K-theory and L-theory. The condition is formu-
lated in terms of finite quotients of the group in question and is motivated by
work of Farrell-Hsiang.

This version is different from the published version. A number of typos and an
incorrect formula for the transfer before Lemma 6.3 pointed out by Holger Reich
have been corrected.

Introduction

Farrell-Hsiang used in [7] a beautiful combination of controlled topology and
Frobenius induction to prove that the Whitehead group of fundamental groups of
compact flat Riemannian manifolds is trivial. This general method has been refined
and used further by Farrell-Hsiang, Farrell-Jones and Quinn, see for example [8, 9,
11, 17]. These results belong to a much wider collection of results that ultimately
led to the Farrell-Jones Conjecture [12] that predicts a formula for K- and L-
theory of group rings RG. This formula describes these groups in terms of group
homology and K- and L-theory of group rings RV , where V varies over the family
VCyc of virtually cyclic subgroups of G. Often it is useful to consider a variant
of the Conjecture where VCyc is replaced by a larger families of subgroups. For
more information about the Farrell-Jones Conjecture and its applications we refer
to [5, 15].

The present paper gives an axiomatic treatment of the Farrell-Hsiang method
leading us to the definition of Farrell-Hsiang groups below. More generally we define
a group to be a Farrell-Hsiang group with respect to a given family of subgroups
F , more or less if the Farrell-Hsiang method is applicable relative to F . Our main
result states that the Farrell-Jones Conjecture holds for these groups relative to
the family F . In the most important case F is the family VCyc of virtually cyclic
subgroups or a family of groups for which the Farrell-Jones Conjecture relative to
VCyc is known. In this case our result implies that if a group G is a Farrell-Hsiang
group relative to F , then G satisfies both the K- and L-theoretic Farrell-Jones
Conjecture with coefficients in additive categories. Our main result here is used in
work with Tom Farrell to prove the Farrell-Jones Conjecture for virtually poly-cylic
groups [1]. We give a very brief overview of this application in an Appendix where
we also discuss examples of Farrell-Hsiang groups.

In [10] Farrell-Jones used a wonderful combination of controlled topology and
the dynamics of the geodesic flow on negatively curved manifolds to prove that
the Whitehead group of the fundamental group of such manifolds vanishes. This
Farrell-Jones method has also been refined and further used in many papers about
the Farrell-Jones conjecture and the Borel conjecture, see for example [12, 13].
In [4, 2] an axiomatic treatment for this method is given that is from a formal
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point of view very similar to our treatment here. In both cases a transfer and a
contracting map are the main ingredients. The main difference is, that the transfer
in the Farrell-Hsiang method uses a finite discrete fiber and its construction depends
on Frobenius induction, whereas in the Farrell-Jones method the fiber is a compact
contractible space and the transfer is essentially given by the tensor product with
the singular chain complex of this fiber. Also, in applications the construction of
the contracting maps is very different. In the first case subgroups of finite but
large index are exploited, in the second case the dynamic of flow spaces is a key
ingredient.

Acknowledgements. The first author thanks Frank Quinn for a long email ex-
change about the Farrell-Hsiang method. This paper was supported by the SFB
878 Groups, Geometry and Actions and by the Leibniz-award of the second author.

1. Farrell-Hsiang groups

A finite groupH is said to be hyperelementary if it can be written as an extension
1 → C → H → P → 1, where C is a cyclic group and P is a p-group for some
prime p.

Definition 1.1 (Farrell-Hsiang group). Let F be a family of subgroups of the
finitely generated group G. We call G a Farrell-Hsiang group with respect to the
family F if the following holds for a fixed word metric dG:

There exists a natural number N such that for every natural number n there
is a surjective homomorphism αn : G → Fn with Fn a finite group such that the
following condition is satisfied. For any hyperelementary subgroup H of Fn we
set H := α−1

n (H) and require that there exists a simplicial complex EH of dimen-
sion at most N with a cell preserving simplicial H-action whose stabilizers belong
to F , and an H-equivariant map fH : G → EH such that dG(g, h) < n implies
d1EH

(fH(g), fH(h)) < 1
n
for all g, h ∈ G, where d1EH

is the l1-metric on EH .

Theorem 1.2 (Main Theorem). Let G be a Farrell-Hsiang group with respect to
the family F in the sense of Definition 1.1. Then G satisfies the K-theoretic and
L-theoretic Farrell-Jones Conjecture with additive categories as coefficients with
respect to the family F .

For the precise formulation and discussion of the Farrell-Jones Conjecture with
coefficients in additive categories we refer to [3].

Remark 1.3. Definition 1.1 can be weakened if one is only interested in the L-
theoretic Farrell-Jones conjecture. In this case it suffices to consider all subgroups
H of F that are either 2-hyperelementary or p-elementary for some prime p 6= 2. In
other words p-hyperelementary subgroups that are not p-elementary can be ignored
for all odd primes p.

2. Categorical preliminaries

2.a. Additive G-categories with involutions. In this paper we will understand
notions like additive category (with involution) or additive G-category (with invo-
lution) always in the strict sense. This means that all our additive categories will
come with a strictly associative functorial direct sum (M,N) 7→ M ⊕ N and an
involution I on an additive category B is a contravariant functor I : B → B with
I2 = idB. When we talk about an additive G-category, the (right) G-action is un-
derstood to be in the strict sense, i.e., for every g ∈ G we have a functor Rg : B → B
of additive categories such that Rh ◦ Rg = Rgh for g, h ∈ G. If B comes with an
involution IB, then we require IB ◦Rg = Rg ◦ IB for all g ∈ G.
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Remark 2.1. Often a more general definition of additive categories with involutions
is used, where the equality I2 = idB is replaced by a natural equivalence E : I2 →
idB. One may also consider additive categories with weak G-actions. We refer
to [3], where all these notion are explained, it is shown how one can replace the
weak versions by equivalent strict versions, and – most important – that for a proof
of the Farrell-Jones Conjecture it suffices to consider the strict versions (see [3,
Theorem 0.2]). We use the strict versions to simplify some formulas. The only slight
disadvantage of this is, that it forces us to replace some very natural categories by
some slightly less natural categories, see for instance the definition of modZ below.

A functor between additive categories with involutions (B, I) and (B′, I ′) is a pair
(F,E) where F : B → B′ is an additive functor, and E : F ◦ I → I ′ ◦ F is a natural
equivalence such that I ′(E(M)) = E(I(M)) for all objectsM ∈ B. If F ◦ I = I ′ ◦F
and E = id, then the functor is said to be strict. Most of our functors will be strict,
but not all of them. Functors between additive categories with involutions induce
maps in L-theory.

2.b. The category modZ of based finitely generated free abelian groups.

On the category of finitely generated free abelian groups the involution T 7→ T ∗ :=
HomZ(−,Z) is not strict since T is not (T ∗)∗ on the nose. To fix this inconvenience
we will consider the following additive category with involution modZ instead. The
objects of modZ are Zn, n = 0, 1, 2, . . . . The set of morphisms mormodZ

(Zn,Zm) is
given by n×m-matrices. Composition is given by the usual matrix multiplication.
The direct sum is given by Z

n ⊕Z
m = Z

n+m. The involution on modZ acts as the
identity on objects and as transposition of matrices on morphisms. For an additive
category A there is a functor

−⊗Z− : modZ×A → A

defined by Z
n⊗ZM =

⊕n

i=1M , see for example [2, Section 6]. This functor is
bilinear on morphisms groups. It follows that given an object Z

n in modZ, the
functor Z

n⊗Z− : A → A is a functor of additive categories, and given an object
M ∈ A, the functor −⊗ZM : modZ → A is a functor of additive categories. If A
comes with an involution, then modZ×A inherits the obvious product involution
and −⊗Z− is compatible with the involutions.

2.c. The category mod(Z,G) of ZG-modules which are finitely generated

free as abelian groups. Let G be a group. We define the following additive
category with involution mod(Z,G). Objects in mod(Z,G) are pairs (Zn, ρ) where
ρ : G → GL(n,Z) is a group homomorphism. A morphism f : (Zn, ρ) → (Zm, η) is
a morphism f : Zn → Z

m in modZ which is compatible with the homomorphisms
ρ and η, i.e., η(g) ◦ f = f ◦ ρ(g) for all g ∈ G. The direct sum is given by the direct
sum in modZ. Define an involution Imod(Z,G)

on mod(Z,G) as follows. It sends an

object (Zn, ρ) to the object (Zn, ρ∗), where ρ∗(g) is defined by ImodZ
(ρ(g−1)). A

morphism f : (Zn, ρ) → (Zm, η) is sent to the morphism given by ImodZ
(f).

Of course mod(Z,G) is a model for the category of ZG-modules which are finitely
generated free as abelian groups and has the extra feature that the involution is
strict.

Let α : H → G be a group homomorphism. We obtain a functor of additive
categories with involution called restriction

resα : mod(Z,G) → mod(Z,H),

which sends an object (Zn, ρ) to the object (Zn, ρ◦α) and a morphism f : (Zn, ρ) →
(Zm, η) to the morphism f : (Zn, ρ ◦ α) → (Zm, η ◦ α).
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Next we define the induction functor for a subgroup H of G of finite index

indG
H : mod(Z,H) → mod(Z,G).

It will depend on a choice of representatives g0, . . . , gm−1 ∈ G forG/H = {g0H, . . . , gm−1H}.
This choice will not matter in the sequel, since for two such choices we obtain a
unique natural equivalence of the corresponding functors of additive categories with
involution. Consider an object (Zn, ρ) in mod(Z,H). The image under indGH is the
object (Zm·n, η), where η(g) ∈ GL(m · n,Z) for g ∈ G is the morphism in modZ

given by the matrix whose entry at (kn + i, k′n + i′) is 0 if ggk′H 6= gkH, and is
ρ
(
g−1
k ggk′

)
i,i′

if ggk′H = gkH . Here 0 ≤ k, k′ ≤ m− 1, 1 ≤ i, i′ ≤ n.

Remark 2.2. Our above definition of indGH may appear unnatural. But the only
reason for this is our choice of the categorymod(Z,H); it really is the usual definition
of induction:

Let (Zn, ρ) be an object of mod(Z,H). Then Z
n becomes an Z[H ]-module via ρ.

We have the following isomorphism of Z-modules

Z[G]⊗Z[H]Z
n ∼=

m−1⊕

j=0

Z[gjH ]⊗Z[H]Z
n ∼=

m−1⊕

j=0

Z
n ∼= Z

m·n

and the above formula for η describes how the action of G on Z[G]⊗Z[H]Z
n conju-

gates to an action on Z
m·n under the above isomorphism.

3. The obstruction category OG(E,Z, d;A)

Let E be a G-space and (Z, d) be a quasi-metric space with a free, proper
and isometric G-action. In this section we will review the the additive category
OG(E,Z, d;A) that was originally defined in [4, Section 3], see also [2, Section 4].
If A is an additive category with involution, then OG(E,Z, d;A) is an additive
category with involution.

3.a. Objects. Objects inOG(E,Z, d;A) are given by sequencesM = (My)y∈Z×E×[1,∞)

of objects from A subject to the following conditions.

(i) G-compact support over Z×E. There is a compact subset K of Z×E such
that Mz,e,t = 0 whenever (z, e) 6∈ G ·K.

(ii) Locally finiteness. For all y ∈ Z×E×[1,∞) there exists an open neighbor-
hood U such that {y ∈ U |My 6= 0} is finite.

(iii) G-equivariance. For all y ∈ Z×E×[1,∞) and g ∈ G we have Mgy =
g(My). Here gy = (gz, ge, t) for y = (z, e, t).

The involution IO on OG(E,Z, dG;A) acts on objects point-wise, i.e., we have
(IO(M))z,e,t = IA(Mz,e,t).

3.b. Morphisms. Let M = (My)y∈Z×E×[1,∞), N = (My)y∈Z×E×[1,∞) be objects

from OG(E,Z, d). A morphism ψ : M → N in OG(E,Z, d) is given by a sequence
ψ = (ψy,y′)y,y′∈Z×E×[1,∞) of morphisms ψy,y′ : My′ → Ny in A subject to the
following conditions.

(i) Row and column finiteness. For all y ∈ Z×E×[1,∞) the set {y′ | ψy,y′ 6=
0 or ψy′,y 6= 0} is finite.

(ii) Metric control over Z. There is R > 0 (depending on ψ) such that ψy,y′ =
0 whenever y = (z, e, t), y′ = (z′, e′, t′) with d(z, z′) > R.

(iii) Metric control over [1,∞). There is A > 0 (depending on ψ) such that
ψy,y′ = 0 whenever y = (z, e, t), y′ = (z′, e′, t′) with |t− t′| > A.
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(iv) G-continuous control over E×[1,∞). Let e0 ∈ E, V be an Ge0 -invariant
neighborhood of e0 and b > 0. (Here Ge0 = {g | ge0 = e0}.) Then we
require the existence of B > 0 and a Ge0 -invariant neighborhood U of e0
such that ψy,y′ = ψy′,y = 0 whenever y = (z, e, t), y′ = (z′, e′, t′) with
(e, t) ∈ U×(B,∞) and (e′, t′) 6∈ V×(b,∞).

(v) G-equivariance. For all y, y′ ∈ Z×E×[1,∞) and g ∈ G we have ψgy,gy′ =
g(ψy,y′).

For the constructions in this paper the second condition will be the most important
condition and we will say that ψ is R-controlled if it is satisfied for a given R > 0.
Addition and composition of morphisms is defined as for matrices: (ψ + ψ′)y,y′ =
ψy + ψ′

y′ and (ψ ◦ ψ′)y,y′′ =
∑

y′ ψy,y′ ◦ ψy′,y′′ . The involution is on morphisms

defined by the formula (IO(ψ))y,y′ = IA(ψy′,y).
We will often drop A from the notation and write OG(E,Z, d) instead of

OG(E,Z, d;A).

3.c. Functoriality. In this paper we will only need the functoriality ofOG(E,Z, d;A)
in the Z-variable. Let (Z, d) and (Z ′, d′) be quasi-metric spaces with free, proper
and isometric G-actions. Let f : Z → Z ′ be G-equivariant continuous map such
that for any r > 0 there is R > 0 such that d′(f(z0), f(z1)) < R whenever
d(z0, z1) < r. Then f induces a functor f∗ : O

G(E,Z, d) → OG(E,Z ′, d′) which
is given by (f∗(M))e,z,t =

⊕
z′∈f−1(z)Me,z′,t. (The condition ensures that metric

control over Z is turned into metric control over Z ′; the G-compact support con-
dition for objects ensures that the sum in the definition of f∗ is finite.) Strictly
speaking f∗ is only defined up to natural equivalence because the direct sum may
only be defined up to canonical isomorphism. (Our assumptions on A only imply
that sums over ordered finite index set are canonically defined.)

3.d. OG(E,G, d) as the obstruction to the Farrell-Jones conjecture. The
following result is a consequence of [2, Theorem 5.2].

Theorem 3.1. Let G be a finitely generated group, dG a word metric on G and F
be a family of subgroups.

(i) Assume that K∗(O
G(EFG,G, dG)) is trivial in all degrees. Then the K-

theory assembly map HG
∗ (EFG;KA) → K∗(

∫
G
A) is an isomorphism.

(ii) Assume that L∗(O
G(EFG,G, dG)) is trivial in all degrees. Then the L-

theory assembly map HG
∗ (EFG;LA) → L∗(

∫
G
A) is an isomorphism.

3.e. The controlled product category. Let (Zn, dn) be a sequence of quasi-
metric spaces with free, proper and isometric G-actions. Consider the product
category

∏
n∈N

OG(E,Zn, dn). A morphism ϕ = (ϕn)n∈N is said to be R-controlled

for R > 0 is ϕn is R-controlled for all n. We define OG(E, (Zn, dn)n∈N) as the
category whose objects are objects from the product category and whose morphisms
are morphisms from the product category that are R-controlled for some R. There
is for any k a canonical projection functor OG(E, (Zn, dn)n∈N) → OG(E,Zk, dk).

4. The Core of the proof of the main Theorem 1.2

Let G be a Farrell-Hsiang group with respect to F . Let N be the number ap-
pearing in Definition 1.1. For n ∈ N there is then αn : G → Fn, a surjective group
homomorphism onto a finite group Fn, such that the following holds: For any hy-
perelementary subgroup H of Fn and H := αn

−1(H) there is a simplicial complex
EH of dimension at most N with a cell preserving simplicial H-action whose stabi-
lizers belong to F , and an H-equivariant map fH : G→ EH such that dG(g, h) < n
implies d1EH

(fH(g), fH(h)) < 1
n
for all g, h ∈ G, where d1EH

is the l1-metric on E.
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Here we write H for αn
−1(H) and we will use this convention throughout the re-

mainder of this paper. We denote by Hn the family of hyperelementary subgroups
of Fn. We set Xn := G×

∐
H∈Hn

indG
H
EH and Sn := G×

∐
H∈Hn

G/H. We equip
Xn and Sn with diagonal G-action. We will use the quasi-metrics dXn

on Xn and
dSn

on Sn defined by

dXn
((g, x), (h, y)) := dG(g, h) + n · d1indG

H
EH

(x, y),

dSn
((g, aH), (h, bK)) :=

{
dG(g, h) if K = H and aH = bK,

∞ otherwise.

Here g, h, a, b ∈ G, x, y ∈ Xn, H,K ∈ Hn and d1
indG

H
EH

is the l1-metric on indG

H
EH .

Abbreviate E := EFG. The proof of Theorem 1.2 is organized around the following
diagram of additive categories and functors.

(4.1)
⊕

n∈N
OG(E,Xn, dXn

)

I

��

OG(E, (Sn, dSn
)n∈N)

Pk

��

F
// OG(E, (Xn, dXn

)n∈N)

Qk

��

OG(E,G, dG)
id

// OG(E,G, dG)

Explanations follow. The functors Pk and Qk are defined as compositions

OG(E, (Sn, dSn
)n∈N) → OG(E, Sk, dSk

) → OG(E,G, dG)

OG(E, (Xn, dXn
)n∈N) → OG(E,Xk, dXk

) → OG(E,G, dG)

where in both cases the first functor is the projection on the k-th factor, and the
second functor is induced by the canonical projection pk : Sk = G×

∐
H∈Hk

G/H →

G and qk : Xk = G×
∐

H∈Hk
indG

H
EH → G respectively. The functor I is the

canonical inclusion. The functor F will be constructed in Proposition 7.1. We have
the following facts.

(i) For all a ∈ K∗(O
G(E,G, dG)) and b ∈ L∗(O

G(E,G, dG)) there are â ∈

K∗(O
G(E, (Sn, dSn

)n∈N)) and b̂ ∈ L∗(O
G(E, (Sn, dSn

)n∈N)) such that for

all k we have
(
Kn(Pk)

)
(â) = a and

(
L∗(Qk)

)
(b̂) = b. This will be proved

in Theorem 6.5.
(ii) For all k we have Qk ◦ F = Pk, see Proposition 7.1.
(iii) The functor I induces an isomorphism in K- and L-theory. For K-theory

this follows from [4, Theorem 7.2]. This result only depends on the prop-
erties of K-theory listed in [2, Theorem 5.1]. Since these properties are
also enjoyed by L-theory, I induces an isomorphism in L-theory as well.

Proof of Theorem 1.2. Because of Theorem 3.1 it suffices to show that the K-
and L-theory of OG(E,G, dG) is trivial. Let a ∈ Kn(O

G(E,G, dG)) and b ∈
Ln(O

G(E,G, dG)). By the first fact there are â ∈ Kn(O
G(E, (Sn, dSn

)n∈N)) and

b̂ ∈ Ln(O
G(E, (Sn, dSn

)n∈N)) such that for all k we have
(
Kn(Pk)

)
(â) = a and(

Ln(Pk)
)
(b̂) = b. It is a consequence of the third fact that for sufficient large k

we have
(
Kn(Qk ◦ F )

)
(â) = 0 and

(
L−∞
n (Qk ◦ F )

)
(b̂) = 0. Using the second fact

we conclude a =
(
Kn(Pk)

)
(â) =

(
Kn(Qk) ◦ F

)
(â) = 0 and b =

(
Ln(Pk)

)
(b̂) =(

Ln(Qk ◦ F )
)
(b̂) = 0. (Compare [4, p.45, Proof of Theorem 1.1].) �
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5. Abstract transfers for additive categories

5.a. Swan group and Dress’ equivariant Witt group. We have introduced
the additive category with involutions mod(Z,G) in Section 2. Recall that it is
equivalent to the category of ZG-modules which are finitely generated free as Z-
modules. We will use the exact structure on mod(Z,G) where a sequence is called
exact if it is exact as a sequence of Z[G]-modules (or equivalently as a sequence of
abelian groups). Notice that with this exact structure not all exact sequences are
split exact over ZG. The Swan group and Dress’ equivariant Witt group are defined
with respect to this exact structure as corresponding Grothendieck or Witt groups

Sw(Z, G) := G0(mod(Z,G)) and GW(Z, G) :=W (mod(Z,G)),

see [18, 6, 14]. Both of these become rings via the tensor product over Z, equipped
with the diagonal G-action, but we will not need this ring structure and ignore it
in this paper. By 1Sw ∈ Sw(Z, G) we will denote the class of Z with the trivial
G-action and analogously for 1GW ∈ GW(Z, G). (These are of course the units for
the ring structures.)

For a group homomorphism α : H → G there are restriction maps

resα : Sw(Z, G) → Sw(Z, H)

resα : GW(Z, G) → GW(Z, H)

coming from the restriction functor resα : mod(Z,G) → mod(Z,H). Clearly, we have
resα(1Sw) = 1Sw and resα(1GW) = 1GW.

For a subgroup H ⊆ G of finite index there are induction homomorphisms

indGH : Sw(Z, H) → Sw(Z, G)

indGH : GW(Z, H) → GW(Z, G)

coming from the induction functor indGH : mod(Z,H) → mod(Z,G).
Actually, both Sw(Z,−) and GW(Z,−) are Green functors. Later on we will

make crucial use of the following results due to Swan and Dress.

Theorem 5.1 (Swan [18];Dress[6]). Let F be a finite group. Let H be the family
of hyperelementary subgroups of F .

(i) There are τH ∈ Sw(Z, H), H ∈ H such that

1Sw =
∑

H∈H

indF
H(τH) ∈ Sw(Z, F ).

(ii) There are σH ∈ GW(Z, H), H ∈ H such that

1GW =
∑

H∈H

indFH(σH) ∈ GW(Z, F ).

Remark 5.2. In Theorem 5.1 (ii) the family H can be replaced by the family of
subgroups H of F that are either 2-elementary or p-hyperelementary for some
prime p 6= 2.

5.b. Action of Sw(Z, G) in K-theory. Let R be a ring and G be a group. Denote
by modR[G] the category of finitely generated projective R[G]-modules. The tensor

product over Z, equipped with the diagonal G-action, (T,M) 7→ T⊗∆
Z
M defines a

bilinear functor

−⊗∆
Z − : mod(Z,G)×modR[G] → modR[G].

In particular, we obtain a functor T⊗∆
Z
− : modR[G] → modR[G] for every module

T ∈ mod(Z,G). Applying K-theory we obtain a endomorphism K∗(T⊗
∆
Z
−) of
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K∗(R[G]), This endomorphism depends only on the class of T in Sw(Z, G) and
yields a pairing

µ : Sw(Z, G)⊗K∗(R[G]) → K∗(R[G])

such that µ([T ]⊗a) = K∗(T⊗
∆
Z
−)(a) for all a ∈ K∗(R[G]) (see [16, Corollary 1

on page 106]). This has a generalization as follows. For an additive category B a
functor

F : mod(Z,G)×B → B

is said to be exact if F is bilinear and for any short exact sequence (which is not

necessarily split exact) 0 → S0
i
−→ S1

p
−→ S2 → 0 in mod(Z,G) and any object B in

B the induced sequence 0 → F (S0, B)
F (i,idB)
−−−−−→ F (S1, B)

F (p,idB)
−−−−−−→ F (S2, B) → 0 in

mod(Z,G) is exact in B. Recall that a sequence 0 → B0
j
−→ B1

q
−→ B2 → 0 in an

additive category B is called exact if it is split exact, i.e, q ◦ j = 0 and there exists
a morphism s : B2 → B0 such that q ◦ s = idB2 and j ⊕ s : B0 ⊕ B2 → B1 is an
isomorphism.

Proposition 5.3. Given an exact functor F : mod(Z,G)×B → B, there is a bilinear
pairing

µF : Sw(Z, G)⊗K∗(B) → K∗(B)

such that µF ([T ]⊗a) = K∗(F (T,−))(a) for all a ∈ K∗(B).

5.c. Action of GW(Z, G) in L-theory. Let B be an additive category with a
strict involution IB and

F : mod(R,G)×B → B

be an exact functor which is compatible with the involutions, i.e., IB(F (−,−)) =
F (−∗, IB(−)). Then for a module T ∈ mod(G,Z) the linear functor F (T,−) : B → B
does a priori not induce a map in L-theory because no canonical isomorphism
IB(F (T,M)) → F (T, IB(M)) is provided. To fix this, we pick an isomorphism
ϕ : T → T ∗ in mod(Z,G) such that ϕ∗ = ϕ, so (T, ϕ) is a symmetric form in
mod(Z,G). Then

F (ϕ, idIB(−)) : F (T, IB(−)) → F (T ∗, IB(−)) = IB(F (T,−))

is a natural isomorphism and F ((T, ϕ),−) := (F (T,−), F (ϕ, idIB(−))) : B → B is
a functor of additive categories with involutions. There is the following analog of
Proposition 5.3.

Proposition 5.4. Given an exact functor F : mod(G,Z)×B → B that is compatible
with involutions, there is a bilinear pairing

µF : GW(Z, G)⊗L∗(B) → L∗(B)

such that µF ([T, ϕ]⊗b) = L∗(F ((T, ϕ),−))(b) for all b ∈ L∗(B) and all symmetric
forms (T, ϕ) over mod(Z,G).

Proof. If B is the category of finitely generated free R[G]-modules and F is the
diagonal tensor product, then this is worked out in detail in [6] and [14]. The case
of general F and B is not more complicated. �

6. The transfer

6.a. Transfer functors. Let G be a group with a metric dG and E be a G-space.
We define a functor

tr : mod(Z,G)×OG(E,G, dG) → OG(E,G, dG)

as follows. Recall that we have a tensor product functor modZ×A → A which
is compatible with the involution on modZ and A, see Section 2. For objects
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T = (Zn, ρ) ∈ mod(Z,G) and M = (Mz)z∈G×E×[1,∞) ∈ OG(E,G, dG) we define

tr(T,M) ∈ OG(E,G, dG) by setting
(
tr(T,M)

)
z
:= Z

n⊗ZMz

for z ∈ G×E×[1,∞). For morphisms f ∈ mod(Z,G) and ψ = (ψz,z′)z,z′∈G×E×[1,∞) ∈

OG(E,G, dG) we define tr(f, ψ) by setting
(
tr(f, ψ)

)
z,z′

:= (f ◦ ρ(g−1g′))⊗Zψz,z′

for z = (g, e, t), z′ = (g′, e′, t′) ∈ G×E×[1,∞).

Lemma 6.1. The functor tr is exact. It is compatible with involutions if A comes
with a (strict) involution.

Proof. The compatibility with involutions follows from the same compatibility for
⊗Z.

Consider an exact sequence 0 → S0
i
−→ S1

q
−→ S2 → 0 in mod(Z,G). We have

to show that for any object M in OG(E,G, dG) that the composite tr(q, idM ) ◦
tr(i, idM ) is trivial, tr(q, idM ) : tr(S1,M) → tr(S2,M) is split surjective, and that
the direct sum of the splitting and the map tr(i, idM ) yields an isomorphism

tr(S0,M)⊕ tr(S2,M)
∼=
−→ tr(S1,M)). We only construct the splitting of tr(q, idM ).

Let s : S →֒ T be a section for q as a map of Z-modules. Then a section ŝ for
tr(q, idM ) is defined by setting

(ŝ)z,z′ :=

{
s⊗ idMz

if z = z′

0 otherwise.

�

Remark 6.2. To illustrate the proof above consider an epimorphism p : M → N of
ZG-modules which are finitely generated free as abelian groups and the induced
map of ZG-modules (with respect to the diagonal action) p⊗Z idZG : M ⊗Z ZG→
N ⊗Z ZG. We want to construct a ZG-splitting. Choose any map of Z-modules
s : N →M with p ◦ s = idN . It exists since we do not require that s is compatible
with the G-action. Then a ZG-splitting of p ⊗Z idZG is given by the ZG-map
N ⊗Z ZG→M ⊗Z ZG sending n⊗ g to gs(g−1n)⊗ g.

We will need a variant of tr that combines it with an induction map. This will
yield additional control in the target category which is crucial for our argument.
Let α : G→ F be a surjective group homomorphism, H be subgroup of finite index
in F . Put H = α−1(H). We have defined induction and restriction in Section 2.
Consider the functor

trα := tr(resα ◦ indFH(−),−) : mod(Z,H)×OG(E,G, dG) → OG(E,G, dG).

Define a quasi-metric dG,H on G×G/H by

dG,H((g, aH), (h, bH)) :=

{
dG(g, h) if aH = bH,

∞ otherwise.

The projection pH : G×G/H → G induces a functor PH : OG(E,G×G/H, dG,H) →

O(E,G, dG) and we will see that we can lift trα against PH . Define a functor

t̃rα : mod(Z,H)×OG(E,G, dG) → OG(E,G×G/H, dG,H)

as follows. For objects T = (Zn, ρ) ∈ mod(Z,H) and M = (Mz)z∈G×E×[1,∞) ∈

OG(E,G, dG) we define t̃rα(T,M) by setting
(
t̃rα(T,M)

)
y
:= Z

n⊗ZMz
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for y = (g, aH, e, t) ∈ G×G/H×E×[1,∞) and z := (g, e, t). In order to write out

t̃rα for morphisms we need to choose representatives g0, . . . , gm−1 ∈ G for G/H =
{g0H, . . . , gm−1H}. For morphisms f ∈ mod(Z,H) and ψ = (ψz,z′)z,z′∈G×E×[1,∞) ∈

OG(E,G, dG) we define t̃rα(f, ψ) by setting

(
t̃rα(f, ψ)

)
y,y′

:=

{
f ◦ ρ(α(gk

−1g−1g′gk′))⊗Zψz,z′ if ggkH = g′gk′H,

0 otherwise.

for y = (g, ggkH, e, t), y
′ = (g′, g′gk′H, e′, t′) ∈ G×G/H×E×[1,∞) and z :=

(g, e, t), z′ := (g′, e′, t′). (The extra G/H-factor incorporates the induction from H
to F ; the appearance of α incorporates the restriction along α.)

The following Lemma is a simple exercise in the definitions of trα and t̃rα.

Lemma 6.3.

(i) PH ◦ t̃rα and trα are equivalent functors.
(ii) If ψ is an R-controlled morphism in OG(E,G, dG) and f ∈ mod(Z,H) is

any morphism, then t̃rα(f, ψ) is R-controlled in OG(E,G×G/H, dG,H).

Proof. (i) To check this we unravel the definitions of trα and t̃rα a bit. For
T = (Zn, ρ) we have

(resα ◦ indFH)(Zn, ρ) = (Znm, η ◦ α) = (

m−1⊕

k=0

Z
n, η ◦ α)

where η is as defined in the paragraph before Remark 2.2. It will be helpful to
name each of the m copies of Zn, by T0, . . . , Tm−1. Then Z

nm =
⊕m−1

k=0 Tk. Let z =

(g, e, t) ∈ G×E×[1,∞). For y = (g, ggkH, e, t) we have
(
t̃rα(T,M)

)
y
= Tk⊗ZMz

(as Tk = Z
n). Therefore

(
pH ◦ t̃rα(T,M)

)
z
∼=

⊕m−1
k=0 Tk⊗ZMz =

(
trα(T,M)

)
z
. In

particular, we have a canonical isomorphism τT,M : pH ◦ t̃rα(T,M) ∼= trα(T,M).
We have to check that τ is natural with respect to morphisms (f, ψ). Inspection

of the definition of η shows that for γ ∈ G the (k, k′)-block in η ◦α(γ) with respect

to Z
nm =

⊕m−1
k=0 Tk is given by

(
η ◦ α(γ)

)
k,k′

=

{
ρ(α(g−1

k γgk′)) if γgk′H = gkH,

0 otherwise.

By definition
(
trα(f, ψ)

)
z,z′

= (f ◦ η(α(g−1g′)))⊗Zψz,z′

for z = (g, e, t), z′ = (g′, e′, t′) ∈ G×E×[1,∞). Thus with respect to the decompo-

sition Z
nm =

⊕m−1
k=0 Tk the (k, k′)-block of

(
trα(f, ψ)

)
z,z′

is given by

((
trα(f, ψ)

)
z,z′

)
k,k′

=

{
(f ◦ ρ(α(g−1

k g−1g′gk′)))⊗Zψz,z′ if g′gk′ggkH = H,

0 otherwise.

Comparing this to the definition of t̃rα we see that τ is natural for morphisms.

(ii) By definition we have for z = (g, ggkH, e, t), z
′ = (g′, g′gk′H, e′, t′)

(
t̃rα(f, ψ))z,z′ 6= 0 ⇐⇒

(
ggkH = g′gk′H and ψz,z′ 6= 0

)

where z = (g, e, t), z′ = (g′, e′, t′). �
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6.b. Surjectivity of the Pk in (4.1). In the remainder of this section we use the
notation from Section 4. In particular G will from now on be a Farrell-Hsiang
group. We denote by (pn)∗ : O

G(E, Sn, dSn
) → OG(E,G, dG) the functor induced

by the projection pn : Sn = G×
∐

H∈Hn
G/H → G.

Proposition 6.4. Let n ∈ N.

(i) There are linear functors F+
n , F

−
n : OG(E,G, dG) → OG(E, Sn, dSn

) with
the following two properties

• K∗((pn)∗◦F
+
n )−K∗((pn)∗◦F

−
n ) is the identity on K∗(O

G(E,G, dG));
• if R > 0 and ψ ∈ OG(E,G, dG) is R-controlled, then F+

n (ψ) and
F−
n (ψ) are both also R-controlled.

(ii) There are functors of additive categories with involutions G+
n = (G+

n , E
+
n )

and G−
n = (G−

n , E
−
n ) : OG(E,G, dG) → OG(E, Sn, dSn

) with the following
properties

• L∗((pn)∗ ◦G
+
n )−L∗((pn)∗ ◦G

−
n ) is the identity on L∗(O

G(E,G, dG));
• if R > 0 and ψ ∈ OG(E,G, dG) is R-controlled, then G+

n (ψ) and
G−

n (ψ) are both also R-controlled.
• Denote by I both the involution on OG(E, Sn, dSn

) and the involution
on OG(E,G, dG). For each object M ∈ OG(E,G, dG), the isomor-
phisms E+

n (M) : G+
n (I(M)) → I(G+

n (M)) and E−
n (M) : G−

n (I(M)) →
I(G−

n (M)) are 0-controlled.
Proof. (i) By Theorem 5.1 (i) there are τH ∈ Sw(Z, H), H ∈ Hn such that 1Sw =∑

H∈Hn
indFn

H (τH) ∈ Sw(Z, Fn). Any element in Sw(Z, H) can be written as the

difference of the classes of two modules. Pick modules T+
H and T−

H ∈ mod(Z,G),

H ∈ Hn such that τH = [T+
H ] − [T−

H ]. Because resαn
sends 1Sw ∈ Sw(Z, Fn) to

1Sw ∈ Sw(Z, G) we obtain

1Sw =
∑

H∈Hn

[resαn
◦ indFn

H (T+
H )]− [resαn

◦ indFn

H (T−

H )] ∈ Sw(Z, G)

For H ∈ Hn we have a canonical inclusion G×G/H → Sn = G×
∐

K∈Hn
G/K

that induces an inclusion OG(E,G×G/H, dG,H) → OG(E, Sn, dSn
). Define F±

H

as the composition of t̃rαn
(T±

H ,−) with this inclusion. Then K∗((pn)∗ ◦ F±H) =

K∗(tr(resαn
indFn

H (T±

H ),−)) by Lemma 6.3 (i). Define now

F±
n :=

⊕

H∈Hn

F±

H .

The functor tr is exact by Lemma 6.1 and so Proposition 5.3 applies. Therefore we
can compute for all a ∈ K∗(O

G(E,G, dG))

K∗((pn)∗ ◦ F
+
n )(a)−K∗((pn)∗ ◦ F

−
n )(a)

=
∑

H∈Hn

K∗((pn)∗ ◦ F
+
H )(a)−K∗((pn)∗ ◦ F

−

H )(a)

=
∑

H∈Hn

K∗(tr(resαn
◦ indFn

H (T+
H )))(a)−K∗(tr(resαn

◦ indFn

H (T−

H )))(a)

=
∑

H∈Hn

µtr([resαn
◦ indFn

H (T+
H )]⊗a)− µtr([resαn

◦ indFn

H (T−

H )]⊗a)

= µtr((
∑

H∈Hn

[resαn
◦ indFn

H (T+
H )]− [resαn

◦ indFn

H (T−

H )])⊗a)

= µtr(1Sw⊗a) = a

If R > 0 and ψ ∈ OG(E,G, dG) is R-controlled then each F±

H (ψ) is R-controlled,

because of the control property of t̃rαn
(Lemma 6.3 (ii)) and because G×G/H → Sn
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is an isometric embedding. The direct sum of R-controlled morphisms is again R-
controlled and therefore F+(ψ) and F−(ψ) are both R-controlled.

(ii) We can proceed exactly as in the K-theory case. By Theorem 5.1 (ii) there are

σH ∈ GW(Z, H), H ∈ Hn such that 1GW =
∑

H∈Hn
indHFn

(σH). Any element in

GW(Z, H) can be written as the difference of the classes of two symmetric forms.
Pick symmetric forms (T+

H , ϕ
+
H) and (T−

H , ϕ
−

H) over mod(Z,G), H ∈ Hn such that

σH = [(T+
H , ϕ

+
H)]− [(T−

H , ϕ
−

H)]. Define G±

H as the composition of trαn
((T+

H , ϕ
+
H),−)

with the inclusion ιH : OG(E,G×G/H, dG,H) → OG(E, Sn, dSn
) and set

G±
n :=

⊕

H∈Hn

G±

H .

As in the K-theory case it follows (using now Proposition 5.4) that for all b ∈
L∗(O

G(E,G, dG)) we have

L∗((pn)∗ ◦G
+
n )(b)− L∗((pn)∗ ◦G

−
n )(b) = b

and that G±
n (ψ) is R-controlled, whenever ψ is R-controlled.

It remains to prove the final claim. Let M be an object from OG(E,G, dG).
Then

G±
n (I(M)) =

⊕

H

G+
H(I(M)) =

⊕

H

ιH(t̃rαn
(T±

H , I(M))

I(G±
n (M) =

⊕

H

I(G+
H(M)) =

⊕

H

I(ιH(t̃rαn
(T±

H ,M)

=
⊕

H

ιH(t̃rαn
((T±

H )∗, I(M))

and

E±
n (M) =

⊕

H

ιH(t̃rαn
(ϕ±

H , idI(M)).

The control claim follows from Lemma 6.3 (ii) because idI(M) is 0-controlled. �

Theorem 6.5.

(i) For all a ∈ K∗(O
G(E,G, dG)) there is â ∈ K∗(O

G(E, (Sn, dSn
)n∈N) such

that for all k we have (K∗(Pk))(â) = a.

(ii) For all b ∈ L∗(O
G(E,G, dG)) there is b̂ ∈ L∗(O

G(E, (Sn, dSn
)n∈N) such

that for all k we have (L∗(Pk))(b̂) = b.
Proof. (i) Let F+

n , F−
n be the sequences of functors from Proposition 6.4 (i).

Because of the control property in 6.4 (i) the product functors
∏

n

F+
n : OG(E,G, dG) →

∏

n

OG(E, Sn, dSn
)

lift uniquely to functors

F± : OG(E,G, dG) → OG(E, (Sn, dSn
)n∈N).

Then Pk ◦ F
± = (pk)∗ ◦ F

±

k for all k ∈ N. Thus the first assertion in 6.4 (i) implies
that K∗(Pk)(K∗(F

+)(a)−K∗(F
−)(a)) = a for all a ∈ OG(E,G, dG). Therefore we

can set â := K∗(F
+)(a) −K∗(F

−)(a).

(ii) For L-theory we can argue exactly as we did for K-theory, now using the G±
n

from Proposition 6.4 (ii). Here the third assertion in 6.4 (ii) is needed to ensure that
the E±

n can be combined to a natural transformation, just as the second assertion
is needed to ensure that the G±

n can be combined to a functor. �
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7. The functor F

We use the notation from Section 4. Note first that for any subgroup U of G
there is a bijection of G-sets G×G/U → indU

G resGU G = G×UG defined by (a, gU) 7→
(g, g−1a); the inverse is given by (g, b) 7→ gb, gU . (We use the diagonal G-action on

G×G/U .) For H ∈ Hn we obtain a G-map f̃H : G×G/H → indHG EH by composing

this bijection (for U = H) with indH
G fH : indHG G → indH

G EH . Define the G-map
fn : Sn → Xn by

fn(a, gH) := (a, f̃H(a, gH) = (a, g, fH(g−1a)),

for a, g ∈ G and H ∈ Hn.

Proposition 7.1. The sequence of maps (fn)n∈N induces a functor

F : OG(E, (Sn, dSn
)n∈N) → OG(E, (Xn, dXn

)n∈N).

For all k we have qk ◦ F = pk.

Proof. We need to show that the sequence (fn)n∈N is compatible with the metric
control conditions for the sequences of quasi-metrics (dSn

)n∈N and (dXn
)n∈N more

precisely we need to show that for any r ∈ (0,∞) there is R ∈ (0,∞) such that for
all n and s, s′ ∈ Sn the implication

(7.2) dSn
(s, s′) < r =⇒ dXn

(fn(s), fn(s
′)) < R

holds.
Let r ∈ (0,∞) be given. TheG-action on Sn is cofinite, the quasi-metrics dSn

and
dGn

are G-invariant and fn is G-equivariant. For each s ∈ Sn there are only finitely
many s′ ∈ Sn such that dSn

(s′, s) < r, because the word metric dG has this property
on G. This implies that Dr := {dXn

(fn(s), fn(s
′)) | n < r, s, s′ ∈ Sn, dSn

(s, s′) < r}
is a finite set. We can therefore define R := 1+r+maxDr. We claim that then (7.2)
holds for all n and all s, s′ ∈ Sn. If n < r, then this is clear from the definition
of R. Let n > r and s, s′ ∈ Sn with dSn

(s, s′) < r. Write s = (a, gH) and
s′ = (a′, g′H ′) with H,H ′ ∈ Hn, a, a

′, g, g′ ∈ G. Since dSn
(s, s′) < r <∞ it follows

from the definition of dSn
that H = H ′, gH = g′H ′ and dG(a, a

′) < r < n. Since
dG is G-invariant we also have dG(g

−1a, g−1a′) < n. We conclude from the crucial
contracting property of fH that d1EH

(fH(g−1a), fH(g−1a′)) < 1
n
. Since s = (a, gH),

s′ = (a′, gH) we have fn(s) = (a, g, fH(g−1a)), fn(s
′) = (a′, g, fH(g−1a′)). Thus

dXn
(fn(s), fn(s

′)) = dXn
((a, g, fH(g−1a)), (a′, g, fH(g−1a′)))

= dG(a, a
′) + n · d1

indH
G

EH
((g, fH(g−1a)), (g, fH(g−1a′)))

= dG(a, a
′) + n · d1EH

(fH(g−1a), fH(g−1a′))

< r + n ·
1

n
= r + 1 < R.

This proves our claim. Thus (fn)n∈N induces a functor F .
For the canonical projections pk : Sk → G and qk : Xk → G we have qk ◦fk = pk.

This implies that Qk ◦ F = Pk. �

Appendix A. Applications and examples of Farrell-Hsiang groups

Proofs of the Farrell-Jones Conjecture often combine methods from controlled
topology (for example our Theorem 1.2) with group theoretic and geometric consid-
erations (for example to show that certain groups are Farrell-Hsiang groups with
respect to some family F) and an induction using the transitivity principle [12,
Theorem A.10]. The transitivity principle asserts that for families of groups F ⊆ G
the Farrell-Jones Conjecture for G holds relative to F provided a) the Farrell-Jones
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Conjecture for G holds relative to G and b) for any H ∈ G the Farrell-Jones Con-
jecture holds relative to F . In the following we briefly discuss some results from [1]
and their connection to Farrell-Hsiang groups.

Many crystallographic groups are Farrell-Hsiang groups relative to interesting
families of subgroups, see [1, Proofs of Lemma 2.8, Lemma 2.15, Theorem 2.1].
For example Z

2
⋊− id Z/2 is a Farrell-Hsiang group relative to VCyc. In combina-

tion with the transitivity principle this yields a proof of the Farrell-Jones Conjec-
ture with additive categories as coefficients for virtually finitely generated abelian
groups. This generalizes [17] where only untwisted ring as coefficients are treated.
(The version with additive categories as coefficients has better inheritance and
transitivity properties and encompasses the so called fibered version).

The main motivation for this paper is that its methods apply to situations, where
the known techniques for virtually abelian groups do not work anymore. Namely,
special affine groups are Farrell-Hsiang groups relative to the family of virtually
finitely generated abelian groups, see [1, Proof of Proposition 3.40]. This fact is a
key ingredient for the proof of the Farrell-Jones Conjecture with additive categories
as coefficients for virtually poly-cyclic groups and finally for cocompact lattices in
virtually connected Lie groups in [1].

In summary, our axiomatic treatment of the Farrell-Hsiang method in Theo-
rem 1.2 encapsulates completely the input of controlled topology to [1], separates
it from the necessary group theoretic and geometric arguments carried out there,
and applies for instance to special affine groups.
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